Approach to the synthesis of 4-demethylforskolin (19-norforskolin)

Jerry J. Harnett, James K. Sutherland* and Hua Yang
Chemistry Department, Victoria University of Manchester, Manchester M13 9PL, UK

Two synthetic routes to the methyl ketone $\mathbf{3 0}$ from the dione $\mathbf{2}$ are described. Compound $\mathbf{3 0}$ is a potential precursor of 4-demethylforskolin.

Introduction

There has been interest in recent years in the synthesis of the diterpene forskolin 1 because of its significant biological properties. ${ }^{1}$ A number of transformation products have been prepared from the natural product and their activities measured. Three total syntheses have been reported ${ }^{2}$ so we have investigated the synthesis of the 4 -demethyl (19-nor) compound since it is not readily prepared by modification of the natural product, and comparison of its biological properties with those of forskolin is of interest. The starting material chosen was the dione 2 which had been prepared previously by us. ${ }^{3}$

Results and discussion

Oxidation of dione 2 with SeO_{2}-1,4-dioxane-water gave the alcohol $3(78 \%)$, which was converted into the acetate $4(95 \%)$ with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine. On reduction of acetate 4 with $\mathrm{H}_{2} / 10 \% \mathrm{Pd}$ on C-EtOAc the dione 6 was obtained (95%); its ${ }^{1} \mathrm{H}$ NMR spectrum exhibited a triplet at $\delta 5.33(J 2.5 \mathrm{~Hz})$ establishing the regio- and stereo-chemistry of the oxidation $2 \longrightarrow 3$. The dione 2 undergoes regiospecific addition of $\mathrm{RCCCeCl}{ }_{2}$ reagents to the C-9 carbonyl group (forskolin numbering scheme), ${ }^{3}$ but reaction of compound 6 under similar conditions gave only a low yield of addition product to the C-6 carbonyl group (forskolin numbering). Reduction of the acetate 6 with $\mathrm{NaBH}_{4}{ }^{-}$ $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ gave the alcohol $10(86 \%)$; spectroscopic data $\left[\lambda_{\text {max }} 266\right.$ $\mathrm{nm} ; \delta_{\mathrm{H}} 4.76(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz})$] established the regio- and stereochemistry of the reduction. Attempts to force the alcohol $\mathbf{1 0}$ to react with a variety of nucleophilic acetylides failed, as did reactions with the derived tetrahydropyran (THP) ethers 11 (prepared from alcohol 10 and dihydropyran). With the failure of the intermolecular reactions (presumably due to steric hindrance caused by the axial acetoxy group) we turned to intramolecular cyclisations utilising the anion derived from the latter group. Reaction of the acetate 6 with $\mathrm{LiNPr}^{\mathrm{i}}$ (LDA)tetrahydrofuran (THF) gave the lactone $8(72 \%)$; however, on reduction with NaBH_{4} a compound was obtained whose spectroscopic properties were not consistent with those of the required alcohol. Under similar conditions the diastereoisomeric ethers 11 cyclised to the lactones $14(86 \%)$; the unexpected stability of the hydroxy enol ether is likely to be due to the equatorial disposition of the hydroxy group. On acid hydrolysis the lactones 14 were converted into the enone $16(95 \%)$ [$v_{\text {max }}$ $3460,1750,1670$ and $1620 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 4.23(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}), 4.13$ $(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{d}, J 15$ $\mathrm{Hz}), 1.86(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s})$ and $1.08(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz})]$. Reduction of the enone 16 with $\mathrm{NaBH}_{4}-\mathrm{MeOH}$ at $0^{\circ} \mathrm{C}$ formed the cis-diol 18 which, in accordance with the postulated stereochemistry, gave the ether 19 on reaction with 2-methoxypropene.
A number of approaches were now investigated to cleave and transform the lactone ring into an appropriate functional group which could lead to the fabrication of ring C. That which was eventually successful required reduction of the lactone 19 with

$2 \mathrm{X}=\mathrm{H}$
$3=\mathrm{OH}$
$4 X=O A c$

8 R $=\mathrm{H}$
$9 \mathrm{R}=\mathrm{Me}$

$10 \mathrm{X}=\mathrm{OH}, \mathrm{R}=\mathrm{Me}$
$11 \mathrm{X}=\mathrm{OTHP}, \mathrm{R}=\mathrm{Me}$
$12 \mathrm{X}=\mathrm{OH}, \mathrm{R}=\mathrm{Et}$
$13 \mathrm{X}=\mathrm{OTHP}, \mathrm{R}=\mathrm{Et}$

16

$20 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$ $21 \mathrm{RR}^{\prime}=\mathrm{CMe}_{2}$

26

17

$22 \mathrm{R}=\mathrm{H}$
$23 \mathrm{R}=\beta \mathrm{Me}$

$27 \mathrm{R}^{\prime}=\mathrm{CHO}, \mathrm{R}=\mathrm{H}$
$28 \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$29 \mathrm{R}^{\prime}=\mathrm{CHO}, \mathrm{R}=\mathrm{Me}$
$30 \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}=\mathrm{Me}$

$14 \mathrm{R}=\mathrm{H}$ $15 \mathrm{R}=\mathrm{Me}$

$18 \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$ $19 \mathrm{RR}^{\prime}=\mathrm{CMe}_{2}$

$24 \mathrm{R}=\mathrm{H}$ $25 \mathrm{R}=\mathrm{Me}$

31
$\mathrm{Bu}^{\mathrm{i}}{ }_{2} \mathrm{AlH}$ (DIBAL) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ to yield the diastereomeric lactols 22. Dehydration of compound 22 to give the diene 24 in satisfactory yield proved unexpectedly difficult, but was achieved in 47% yield using $\mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; alternatively the diene could be prepared by reduction of the ketone 16 with DIBAL- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ followed by treatment of the crude product with 2-methoxypropene-toluene- p-sulfonic acid (PTSA) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \%)$. Cleavage of the enol ether double bond was achieved by hydroxylation [$\mathrm{OsO}_{4}-\mathrm{N}$-methylmorpholine N-oxide (NMMNO)- $\left.\mathrm{Bu}^{t} \mathrm{OH}\right]^{4}$ to the diol 26 followed by oxidation with $\mathrm{NaIO}_{4}-\mathrm{MeOH}$-water to give the formate 27 $\left(82 \%\right.$ over two steps), $v_{\max } 1725$ and $1675 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 10.08$ $(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}, \mathrm{s})$ and $5.72(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz})$. Methanolysis of compound 27 with $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}$ yielded the aldehyde 28 (97%) which, in solution, was in equilibrium with the lactol isomer. Oxidation of the mixture with $\mathrm{Pr}_{4} \mathrm{NRuO}_{4}-\mathrm{NMMNO}^{5}$ formed the lactone $31(70 \%), v_{\max } 1750 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 4.02(1 \mathrm{H}$, dd, $J 11.5$ and 6 Hz); the latter signal suggests that ring A has a twist-boat conformation. MM2 calculations predicted that the model with the twist-boat conformation was $\sim 6 \mathrm{kcal}$ $\mathrm{mol}^{-1} \dagger$ more stable than that with a highly distorted chair; application of the Altona equation to the torsion angles found in the models gave J-values of 10.8 and 4.8 Hz for the former and 6.6 and 0.8 Hz for the latter. Reaction of the lactone 31 with $\mathrm{MeMgI}-\mathrm{Et}_{2} \mathrm{O}$ gave the methyl ketone 30 $(88 \%), v_{\max } 1685 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 2.38(3 \mathrm{H}, \mathrm{s})$. These experiments provided three potential precursors (26,27 and 30) for the construction of ring C.

An alternative route to the methyl ketone 30 was also established. Catalytic reduction of the alcohol 3 gave the dihydro compound $5(87 \%)$ which, on reaction with (EtCO$)_{2} \mathrm{O}-$ pyridine, formed the propionate $7(93 \%)$. Cyclisation of propionate 7 to the lactone $9(53 \%)$ was effected with LDATHF at $-78^{\circ} \mathrm{C}$, but again NaBH_{4} reduction to form the alcohol was unsuccessful. However, an approach similar to the previous strategy gave the lactone 15: reduction of 7 to alcohol $12(87 \%)$, conversion of alcohol 12 into the diastereoisomeric ethers $13(90 \%)$ and their cyclisation to the diastereoisomeric lactones $15(69 \%)$. Hydrolysis of the enol ether 15 gave an unsaturated ketone (74%) whose spectroscopic properties, $v_{\text {max }}$ 1750 and $1705 \mathrm{~cm}^{-1}$, left the position (endo- or exo-cyclic) of the double bond in doubt. Structure 17 was supported by the reduction with $\mathrm{NaBH}_{4}-\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ to the alcohol $20\left[\delta_{\mathrm{H}} 4.23(1 \mathrm{H}, \mathrm{t}\right.$, $J 3 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{t}, J 2.5 \mathrm{~Hz})$ and $3.56(1 \mathrm{H}, \mathrm{dd}, J 7$ and 4 Hz$)$] which gave the 7 -monoacetate of diol $\mathbf{2 0}\left[\delta_{\mathrm{H}} 4.60(1 \mathrm{H}, \mathrm{dd}, J 6.8\right.$ and 3.5 Hz$), 4.25(1 \mathrm{H}, \mathrm{t}, J 3 \mathrm{~Hz})$ and $3.97(1 \mathrm{H}, \mathrm{t}, J 3 \mathrm{~Hz})$] on acetylation. Reaction of the diol 20 with 2-methoxypropene gave the ether $21(89 \%)$, which was reduced with DIBAL to a $4: 1$ mixture of lactols $23(89 \%)$ in which the double bond had migrated into an endocyclic position. Reduction with LiAlH_{4} gave the same lactols, but in a reversed (1:9) ratio. As in the previous case, dehydration to the diene proved difficult, with the molecule showing a pronounced tendency to formation of a dimeric ether rather than elimination. However, if the LiAlH_{4} reduction was carried out at $-78{ }^{\circ} \mathrm{C}, \mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}$ added at that temperature, and the mixture allowed to warm up to ambient temperature slowly, the diene 25 was formed and could be isolated (49%) by flash chromatography of the reaction mixture ($\lambda_{\text {max }} / \mathrm{nm} 255 ; \delta_{\mathrm{H}} 6.57(1 \mathrm{H}, \mathrm{q}, J 1.5), 3.27(1$ $\mathrm{H}, \mathrm{t}, J 3.5$) and $1.95(3 \mathrm{H}, \mathrm{d}, J 1.5)$. Oxidation with $\mathrm{OsO}_{4}{ }^{-}$ NMMNO- $\mathrm{Bu}^{t} \mathrm{OH}$ gave the crude diol which, without purification, was oxidised with $\mathrm{NaIO}_{4}-\mathrm{MeOH}$-water to the formate $29(33 \%)$. Methanolysis ($\mathrm{MeOH}-\mathrm{K}_{2} \mathrm{CO}_{3}$) of ester 29 gave the methyl ketone 30 , identical with that prepared previously.

[^0]
Experimental

All ${ }^{1} \mathrm{H}$ NMR spectra were measured in CDCl_{3} at 300 MHz using a Bruker AC300 spectrometer; J-values are given in Hz ; and UV spectra in EtOH using a Shimadzu UV-visible spectrophotometer. Low-resolution mass spectra were measured on a Kratos MS25 instrument in the EI and CI modes, the latter with NH_{3} as carrier gas. Accurate mass measurements were determined using a Kratos MS30 instrument with a DS55 data system, and IR spectra as thin films using a Perkin-Elmer 1710 FT IR spectrometer. The term 'work-up in the usual way' implies washing of the organic extract with brine, drying of the solution with MgSO_{4}, filtration and concentration of the extract under reduced pressure. Light petroleum refers to the fraction with distillation range $40-60^{\circ} \mathrm{C}$.

Enedione 3

The enedione $2(8.65 \mathrm{~g}), \mathrm{SeO}_{2}(12.31 \mathrm{~g})$ and water ($1 \mathrm{~cm}^{3}$) in $1,4-$ dioxane ($150 \mathrm{~cm}^{3}$) were heated under reflux for 2 days under N_{2}. The mixture was then cooled and filtered through Celite. The filtrate was concentrated under reduced pressure to give a brown oily solid, which upon $\mathrm{SiO}_{2} 60$ flash column chromatography ($4: 6$; EtOAc-hexane) yielded the dione 3 as an offwhite solid ($7.26 \mathrm{~g}, 78 \%$), mp 123-124 ${ }^{\circ} \mathrm{C}$ (from EtOAc-hexane); $\nu_{\text {max }} / \mathrm{cm}^{-1} 3485$ and $1700 ; \delta_{\mathrm{H}} 5.75(2 \mathrm{H}, \mathrm{m}), 4.33(1 \mathrm{H}, \mathrm{d}, J 3), 3.99$ $(3 \mathrm{H}, \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{d}, J 10), 1.86(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{d}, J 7)$ and 1.02 ($3 \mathrm{H}, \mathrm{s}$); m / z (EI) 250, (CI) 251 (Found: C, 67.7; H, 7.3. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 7.2 \%$).

Acetate 4

$\mathrm{Ac}_{2} \mathrm{O}\left(3.3 \mathrm{~cm}^{3}\right)$, pyridine ($4.2 \mathrm{~cm}^{3}$) and a catalytic amount of 4-(dimethylamino)pyridine (DMAP) were added successively to a solution of the hydroxy dione $3(0.87 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred at room temp. under N_{2} for 12 h the solvent was removed under reduced pressure to give a viscous brown oil, which was purified by $\mathrm{SiO}_{2} 60$ flash column chromatography ($4: 6$ to $6: 4$; EtOAc-hexane) to afford the acetate $4(1.045 \mathrm{~g}, 95 \%), \mathrm{mp} 73-75^{\circ} \mathrm{C}$ (from EtOAc-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and $1700 ; \delta_{\mathrm{H}} 5.86(1 \mathrm{H}$, ddd, $J 10,5$ and 2$), 5.79$ ($1 \mathrm{H}, \mathrm{dd}, J 10$ and 2$), 5.38(1 \mathrm{H}, \mathrm{d}, J 5), 4.00(3 \mathrm{H}, \mathrm{s}), 3.10(1 \mathrm{H}, \mathrm{d}$, $J 10), 2.75(1 \mathrm{H}, \mathrm{m}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.05(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 292$, (CI) 293 (Found: C, 65.3; H, 6.9. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.8 ; \mathrm{H}, 6.9 \%$).

Acetate 6

The acetate $4(3.35 \mathrm{~g})$ and $10 \% \mathrm{Pd}-\mathrm{C}(200 \mathrm{mg})$ in EtOAc ($40 \mathrm{~cm}^{3}$) under H_{2} were stirred vigorously at room temp. After 40 min the mixture was filtered through Celite to afford a pale yellow solution. Concentration under reduced pressure and $\mathrm{SiO}_{2} 60$ flash column chromatography ($3: 7$ to $4: 6$; EtOAchexane) gave the acetate $6(3.2 \mathrm{~g}, 95 \%)$, $v_{\text {max }} / \mathrm{cm}^{-1} 1745,1705$, 1670 and $1620 ; \delta_{\mathrm{H}} 5.33(1 \mathrm{H}, \mathrm{t}, J 2.5), 3.97(3 \mathrm{H}, \mathrm{s}), 3.06(1 \mathrm{H}, \mathrm{d} J$ $10.5), 2.00(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J 6)$ and $1.08(3 \mathrm{H}$, s); $m /=$ (EI) 294, (CI) 295 (Found: 65.6; H, 7.7. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 7.5 \%$).

Alcohol 10

(a) $\mathrm{NaBH}_{4}(0.8 \mathrm{~g})$ was added portionwise to a stirred solution of the dione $6(3.0 \mathrm{~g})$ in dry $\operatorname{Pr}^{\mathrm{i} O H}\left(60 \mathrm{~cm}^{3}\right)$. Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added carefully to quench the reaction after 30 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. $\mathrm{SiO}_{2} 60$ flash chromatography (4:6 to $1: 1$; EtOAc-hexane) of the product yielded the alcohol 10 as a solid ($2.59 \mathrm{~g}, 86 \%$), mp 200-203 ${ }^{\circ} \mathrm{C}$ (from EtOAchexane); $\lambda_{\max } / \mathrm{nm} 266 ; v_{\max } / \mathrm{cm}^{-1} 3385$ and $1730 ; \delta_{\mathrm{H}} 5.25(1 \mathrm{H}, \mathrm{t}$, $J 2.5), 4.76(1 \mathrm{H}, \mathrm{d}, J 2.5), 4.00(3 \mathrm{H}, \mathrm{s}), 2.01(1 \mathrm{H}, \mathrm{t}, J 2.5), 1.94$ $(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s})$ and $1.10(3 \mathrm{H}, \mathrm{d}, J 6) ; m / z(\mathrm{EI})$ 296, (CI) 297 (Found: C, 64.9; H, 8.4. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}$ requires C , 64.9; H, 8.1 \%).
(b) $\mathrm{NaBH}_{4}(130 \mathrm{mg})$ was added portionwise to a stirred suspension of the dione $6(340 \mathrm{mg})$ and $\mathrm{CeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(290 \mathrm{mg})$ in dry $\mathrm{Pr}^{i} \mathrm{OH}\left(20 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at room temp. for a further 4 h and was then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temp. for 30 min and was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. $\mathrm{SiO}_{2} 60$ flash chromatography ($4: 6 ; \mathrm{EtOAc}-$ hexane) gave the title alcohol ($292 \mathrm{mg}, 85 \%$).

Lactone 8

A solution of acetoxy dione $6(100 \mathrm{mg})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of LDA $\left(1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in cyclohexane; $340 \mathrm{~mm}^{3}$) in THF ($2 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under N_{2}. After 5 h saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added to quench the reaction at $-78^{\circ} \mathrm{C}$ and the mixture was warmed to room temp., and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60$ flash chromatography ($6: 4$ to $7: 3$; EtOAc-hexane) gave the lactone 8 as an off-white solid ($72 \mathrm{mg}, 72 \%$), mp $124-125^{\circ} \mathrm{C}$ (from EtOAc-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3440 and $1730 ; \delta_{\mathrm{H}} 4.65(1 \mathrm{H}, \mathrm{t}, J 3), 3.53(3 \mathrm{H}, \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{d}$, $J 18.5), 2.93(1 \mathrm{H}, \mathrm{d}, J 18.5), 2.22(1 \mathrm{H}, \mathrm{d}, J 8.5), 1.92(3 \mathrm{H}, \mathrm{s})$, $1.12(3 \mathrm{H}, \mathrm{d}, J 6)$ and $1.02(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{CI}) 312$.

Diastereoisomeric ethers 11

3,4-Dihydro- $2 H$-pyran ($1.1 \mathrm{~cm}^{3}$) and PTSA (10 mg) were added to a solution of the hydroxy dione $10(1.15 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($30 \mathrm{~cm}^{3}$). After 12 h the solvent was removed under reduced pressure to give a crude product, which was purified by SiO_{2} 60 flash chromatography ($3: 7$ to $4: 6$; EtOAc-hexane) to give the diastereoisomeric ethers $11(1.31 \mathrm{~g}, 89 \%), v_{\text {max }} / \mathrm{cm}^{-1} 1735$ and $1660 ; m / z$ (EI) 380, (CI) 381 (Found: C, 66.7; H, 8.8. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 8.4 \%$).

Diastereoisomeric lactones 14

$\mathrm{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexane; $45 \mathrm{~cm}^{3}$) was added dropwise to a solution of $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}\left(10.5 \mathrm{~cm}^{3}\right)$ in THF $\left(60 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred $-78^{\circ} \mathrm{C}$ for 10 min , and was then warmed up to $0^{\circ} \mathrm{C}$ during 20 min . The mixture was then cooled down to $-78^{\circ} \mathrm{C}$, a solution of the ethers 11 $(6.30 \mathrm{~g})$ in THF $\left(60 \mathrm{~cm}^{3}\right)$ was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3.5 h . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ was added to quench the reaction at $-78^{\circ} \mathrm{C}$. The mixture was then warmed to room temp. and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~cm}^{3}$). Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60$ flash chromatography ($1: 1$; EtOAc-light petroleum) afforded the diastereoisomeric lactones 14 as an oil (4.90 g, 86\%), $v_{\text {max }} / \mathrm{cm}^{1} 3450$ and $1725 ; \delta_{\mathrm{H}}($ isomer A) $4.76(1 \mathrm{H}, \mathrm{t}, J 3), 4.53(1$ $\mathrm{H}, \mathrm{t}, J 1.5), 4.29(1 \mathrm{H}, \mathrm{d}, J 4), 4.02(1 \mathrm{H}$, ddd, $J, 15,7$ and 4$), 3.55$ $(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{d}, J 18), 2.59(1 \mathrm{H}, \mathrm{d}, J 18), 1.75$ $(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s})$ and $0.98(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{H}}($ isomer B) $4.94(1 \mathrm{H}, \mathrm{t}$, $J 2), 4.52(1 \mathrm{H}, \mathrm{t}, J 3), 4.29(1 \mathrm{H}, \mathrm{d}, J 4.5), 3.91(1 \mathrm{H}, \mathrm{m}), 3.52(3$ $\mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{d}, J 18), 2.58(1 \mathrm{H}, \mathrm{d}, J 18), 1.74(3$ $\mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s})$ and $0.97(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{CI}) 381$ (Found: C, $66.0 ; \mathrm{H}, 8.5 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 8.4 \%$).

Lactone 16

$10 \mathrm{Mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(0.1 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of the diastereoisomeric lactone $14(66 \mathrm{mg})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ at room temp. After 1 h the mixture was neutralised with 1 mol $\mathrm{dm}^{3} \mathrm{NaOH}$. Water $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ were then added. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and work-up in the usual way followed by flash chromatography ($1: 1$; EtOAclight petroleum) on silica gel 60 furnished the lactone 16 as a white solid ($44 \mathrm{mg}, 95 \%$), mp $163-164{ }^{\circ} \mathrm{C}$ (from EtOAchexane); $v_{\max } / \mathrm{cm}^{-1} 3460,1750$ and $1670 ; \delta_{\mathrm{H}} 4.23(1 \mathrm{H}, \mathrm{t}, J 2)$, $4.13(1 \mathrm{H}, \mathrm{d}, J 3), 3.60(1 \mathrm{H}, \mathrm{d}, J 15), 3.42(1 \mathrm{H}$, br d,$J 15), 2.59$ $(1 \mathrm{H}, \mathrm{m}), 1.86(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s})$ and $1.08(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found:

C, $68.4 ; \mathrm{H}, 7.7 \% ; \mathrm{M}^{+}, 264.1352 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.2$; H, 7.6\%, M, 264.1361).

Isopropylidenelactone 19

$\mathrm{NaBH}_{4}(69 \mathrm{mg})$ was added portionwise to a solution of the lactone $16(242 \mathrm{mg})$ in MeOH at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 40 min the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by flash chromatography (EtOAc) on silica gel 60 gave the diol 18 as a viscous oil ($195 \mathrm{mg}, 80 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 3420$ and $1735 ; \delta_{\mathrm{H}} 4.35(1 \mathrm{H}$, dd, $J 7$ and 3.5$), 4.17(1 \mathrm{H}$, $\operatorname{brd}, J 7), 4.07(1 \mathrm{H}, \mathrm{t}, J 3.5), 3.40(1 \mathrm{H}, \mathrm{d}, J 14), 3.18(1 \mathrm{H}, \operatorname{brd}, J$ 14), $1.82(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s})$ and $1.10(3 \mathrm{H}, \mathrm{s}) ; m / z$ (EI) 266.

PTSA was added to a solution of the diol (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~cm}^{3}$) at room temp. 2-Methoxypropene (27 mg) was added and the mixture was stirred at room temp. under N_{2} for 2 h . The solvent was removed under reduced pressure to give a crude product, which was purified by flash column chromatography ($3: 7$; EtOAc-hexane) on silica gel 60 to give the acetal 19 as a solid ($10 \mathrm{mg}, 91 \%$), mp $80-82^{\circ} \mathrm{C}$ (EtOAc-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1745 ; \delta_{\mathrm{H}} 4.50(2 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{t}, J 3), 3.43(1 \mathrm{H}, \mathrm{d}, J 15), 3.19$ $(1 \mathrm{H}, \mathrm{dq}, J 15$ and 1.5$), 1.85(3 \mathrm{H}, \mathrm{d}, J 1.5), 1.50(3 \mathrm{H}, \mathrm{s}), 1.37(3$ $\mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s})$ and $1.05(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: $\mathrm{M}^{+}, 3.06 .1831$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{M}, 306.1831$).

Diastereoisomeric lactols 22

DIBAL ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $1 \mathrm{~cm}^{3}$) was added dropwise to a solution of the lactone $19(131 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 1 h the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$ and then was warmed to room temp. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by flash chromatography on silica gel 60 ($1: 1$; EtOAc-hexane) yielded the diastereoisomeric lactols 22 as a solid $(113 \mathrm{mg}, 86 \%), v_{\text {max }} / \mathrm{cm}^{-1} 3415 ; \delta_{\mathrm{H}} 5.15(1 \mathrm{H}, \mathrm{dd}, J 8$ and $6), 4.50(2 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{t}, J 3), 2.85(1 \mathrm{H}, \mathrm{dd}, J 14$ and 6$)$, $1.82(3 \mathrm{H}, \mathrm{d}, J 1.5), 1.51(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s})$ and $1.03(3 \mathrm{H}, \mathrm{d}, J 6)$.

Diene 24

(a) $\mathrm{Et}_{3} \mathrm{~N}(51 \mathrm{mg})$ was added dropwise to a solution of the lactol (50 mg) and $\mathrm{MeSO}_{2} \mathrm{Cl}(37 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temp. for 4.5 h . The solvent was then removed under reduced pressure to give a crude product, which was purified by flash column chromatography ($2: 8$; EtOAc -hexane) on silica gel 60 to give the diene 24 as an oil ($22 \mathrm{mg}, 47 \%$), $\lambda_{\text {max }} / \mathrm{nm} 254$; $\delta_{\mathrm{H}} 6.63(1 \mathrm{H}, \mathrm{d}, J 6), 5.84(1 \mathrm{H}, \mathrm{d}, J 6), 4.52(1 \mathrm{H}, \mathrm{d}$, $J 8), 4.48(1 \mathrm{H}$, dd, $J 8$ and 4$), 3.47(1 \mathrm{H}, \mathrm{t}, J 3), 1.82(3 \mathrm{H}, \mathrm{s})$, $1.54(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s})$ and $1.07(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: M^{+}, 290.1874. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{M}, 290.1881$).
(b) DIBAL ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $7.5 \mathrm{~cm}^{3}$) was added dropwise to a solution of lactone $16(500 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$ and the mixture was warmed to room temp. $1 \mathrm{Mol} \mathrm{dm}{ }^{3} \mathrm{HCl}$ was added, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up of the combined organic phases in the usual way gave a triol as a solid (490 mg , 89%) (Found: $\mathrm{M}^{+}, 268.1672 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{M}, 268.1674$).

Anhydrous PTSA (5 mg) was added to a solution of the triol [crude sample (490 mg)] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$, at room temp. under N_{2}, followed by addition of 2-methoxypropene $(0.70$ cm^{3}). The resulting mixture was stirred at room temp. for 14 h . 10% Aq. NaHCO_{3} was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way gave a crude product, which upon $\mathrm{SiO}_{2} 60$ flash chromatography ($2: 8$; EtOAc-light petroleum) afforded the title diene ($159 \mathrm{mg}, 27 \%$).

Aldehyde 27

$\mathrm{OsO}_{4}(5 \mathrm{mg})$ was added to a solution of the diene $24(145 \mathrm{mg})$, NMMNO hydrate (101 mg) and water (5 drops) in $\mathrm{Bu}^{t} \mathrm{OH}$ ($5 \mathrm{~cm}^{3}$). The resulting mixture was stirred at room temperature under N_{2} for 4.5 h . Sodium metabisulfite (30 mg) was then added and the mixture was stirred at room temp. for 30 min . The mixture was filtered through a pad of $\mathrm{SiO}_{2} 60$, which was then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The filtrate was concentrated and dried under reduced pressure to give the diol 26 as a viscous oil (169 mg).
$\mathrm{NaIO}_{4}(324 \mathrm{mg})$ was added to a solution of the above diol $(163 \mathrm{mg})$ in $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$-water $\left(7.5 \mathrm{~cm}^{3}\right)$ The resulting mixture was stirred at room temp. for 1 h . Water ($50 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ were then added. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60$ flash chromatography ($2: 8$; EtOAc-light petroleum) gave the formate 27 as a solid ($131 \mathrm{mg}, 82 \%$ from 24), mp 137-139 ${ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum); $v_{\text {max }} / \mathrm{cm}^{-1} 1725,1675$ and 1620 ; $\delta_{\mathrm{H}} 10.08(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}, \mathrm{s}), 5.72(1 \mathrm{H}, \mathrm{t}, J 2), 4.62(1 \mathrm{H}$, dd, $J 6.5$ and 2.5$), 4.45(1 \mathrm{H}, \mathrm{d}, J 6.5), 2.18(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s})$, $1.40(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s})$ and $1.05(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: M^{+}, 322.1792. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{M}, 322.1780$).

Aldehyde 28

$\mathrm{K}_{2} \mathrm{CO}_{3}(230 \mathrm{mg})$ was added to a solution of the aldehydo formate $27(270 \mathrm{mg})$ in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ at room temp. The mixture was stirred at room temp. for 1 h and was then filtered through Celite. Removal of the solvent under reduced pressure gave a residue to which $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ and water ($80 \mathrm{~cm}^{3}$) were added. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60$ flash chromatography ($3: 7$ to $1: 1$; EtOAc-light petrolum) gave a $1: 2$ mixture ($240 \mathrm{mg}, 97 \%$) of aldehyde $\mathbf{2 8}, \delta_{\mathrm{H}} 10.20(1 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}$, dd, $J 7$ and 3$), 4.45(2$ $\mathrm{H}, \mathrm{m}), 2.40(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.04$ $(3 \mathrm{H}, \mathrm{d}, J 7)$, and the isomeric lactol, $\delta_{\mathrm{H}} 5.82(1 \mathrm{H}, \mathrm{d}, J 3.5), 4.55$ $(1 \mathrm{H}, \mathrm{d}, J 7), 4.45(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{dd}, J 10$ and 7$), 2.62(1 \mathrm{H}$, $\mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s})$ and 1.07 (3 H, d, J 7); m / z (EI) 294, (CI) 295.

Lactone 31

NMMNO monohydrate (35 mg) and $4 \AA$ molecular sieves (powdered, 50 mg) were added to a solution of the aldehyde 28 (50 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.5 \mathrm{~cm}^{3}\right.$). The mixture was stirred at room temp. under N_{2} for 10 min . Tetrapropylammonium perruthenate (TPAP) (5 mg) was then added to the mixture, which was then stirred at room temp. for 14 h . The mixture was filtered through a pad of $\mathrm{SiO}_{2} 60$ and concentrated to give a mixture, which upon $\mathrm{SiO}_{2} 60$ flash column chromatography (3:7; EtOAc-light petroleum) gave the lactone 31 as a viscous oil (35 $\mathrm{mg}, 70 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1750$ and $1675 ; \delta_{\mathrm{H}} 4.65(1 \mathrm{H}, \mathrm{d}, J 7.5)$, $4.49(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 4$), 4.02(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 6$), 2.32$ $(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{s})$ and $1.11(3 \mathrm{H}, \mathrm{d}$, $J 7$); m / z (CI) 310 (Found: $\mathrm{M}^{+}, 292.1665 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires M, 292.1674).

Methyl ketone 30

(a) MeMgI ($3.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Et}_{2} \mathrm{O} ; 200 \mathrm{~mm}^{3}$) was added dropwise to a solution of the γ-lactone $31(35 \mathrm{mg})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ was added to quench the reaction at $0^{\circ} \mathrm{C}$ and then the mixture was warmed to room temp. and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(5 \times 5 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60$ flash chromatography ($3: 7$ to 4:6; EtOAc-hexane) gave the ketone 30 as an oil ($32 \mathrm{mg}, 88 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 3495$ and $1685 ; \delta_{\mathrm{H}} 4.59(1 \mathrm{H}$, dd, $J 6.5$ and 2.5$), 4.33$ (1 H, d, J6.5), $3.37(1 \mathrm{H}, \mathrm{t}, J 3), 3.28(1 \mathrm{H}, \mathrm{m}), 2.38(3 \mathrm{H}, \mathrm{s}), 1.71$
$(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s})$ and $1.03(3 \mathrm{H}, \mathrm{d}, J$ 6); $m / z(\mathrm{Cl}) 326$.
(b) $\mathrm{K}_{2} \mathrm{CO}_{3}(12 \mathrm{mg})$ was added to a solution of the formate 29 $(14 \mathrm{mg})$ in AnalaR $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ the mixture was stirred under N_{2} for 2 h at room temp. Water $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ were added and the mixture was stirred for an additional 10 min . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography, gave the ketone 30 as an oil (11 mg), identical with the material obtained previously.

Propionate 7

The dione 5 (439 mg) was added portionwise to a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, pyridine ($2.1 \mathrm{~cm}^{3}$), propionic anhydride (2.25 cm^{3}), and DMAP (5 mg) under N_{2}. After the mixture had been stirred at room temp. for 15 h the solvents were removed under reduced pressure, the residue was azeotroped with $\mathrm{PhMe}(3 \times 15$ cm^{3}) and was then purified by dry column chromatography on $\mathrm{SiO}_{2} 60 \mathrm{H}$ ($1: 4$; EtOAc-hexane) to yield the ester 7 as an oil (500 $\mathrm{mg}, 93 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1705$ and $1670 ; \delta_{\mathrm{H}} 5.35(1 \mathrm{H}, \mathrm{t}, J 3)$, $3.97(3 \mathrm{H}, \mathrm{s}), 3.07(1 \mathrm{H}, \mathrm{d}, J 11), 2.28(2 \mathrm{H}, \mathrm{q}, J 7.5), 2.08(1 \mathrm{H}$, $\mathrm{m}), 1.82(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{t}, J 7.5), 1.09(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.05(3$ H, s) (Found: $\mathrm{M}^{+}, 308.1620 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $\mathrm{M}, 308.1624$).

Lactone 9

The propionate $7(100 \mathrm{mg})$ as a solution in THF $\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of LDA ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in cyclohexane; $\left.500 \mathrm{~mm}^{3}\right)$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h and was then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and after warming to room temp. was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 25 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography gave the lactone 9 as a solid in 53% yield, mp $125-127^{\circ} \mathrm{C}$ (from EtOAc-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3440,1735,1690$ and $1635 ; \delta_{\mathrm{H}} 4.65(1 \mathrm{H}, \mathrm{t}, J 2.5)$, $3.65(3 \mathrm{H}, \mathrm{s}), 2.95(1 \mathrm{H}, \mathrm{q}, J 7), 2.25(1 \mathrm{H}, \mathrm{d}, J 10.2), 1.90(3 \mathrm{H}, \mathrm{s})$, $1.45(3 \mathrm{H}, \mathrm{d}, J 7), 1.12(3 \mathrm{H}, \mathrm{d}, J 6)$ and $1.01(3 \mathrm{H}, \mathrm{s})$ (Found: $\mathrm{C}, 66.4 ; \mathrm{H}, 7.5 \% ; \mathrm{M}^{+}, 308.1626 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $\mathrm{C}, 66.2$; $\mathrm{H}, 7.8 \%$, M, 308.1624).

Alcohol 12

$\mathrm{NaBH}_{4}(482 \mathrm{mg})$ was added in small portions to a solution of the propionate ester $7(1.57 \mathrm{~g})$ in dry $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}\left(20 \mathrm{~cm}^{3}\right)$ under N_{2} at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 1 h , saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \times 50 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography gave the alcohol 12 as a crystalline solid ($1.378 \mathrm{~g}, 87 \%$), mp $150-151^{\circ} \mathrm{C}$ (from EtOAchexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3380,1725$ and $1605 ; \delta_{\mathrm{H}} 5.25(1 \mathrm{H}, \mathrm{t}, J 3)$, $4.78(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2), 4.00(3 \mathrm{H}, \mathrm{s}), 2.20(2 \mathrm{H}, \mathrm{q}, J 7.5), 2.00$ $(1 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J 7)$ and 1.06 $(3 \mathrm{H}, \mathrm{t}, J 7.5)$ (Found: C, $65.4 ; \mathrm{H}, 8.4 \% ; \mathrm{M}^{+}, 310.1775$. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.8 ; \mathrm{H}, 8.4 \% ; \mathrm{M}, 310.1780$).

Diastereoisomeric tetrahydropyranyl ethers 13

A mixture of ester 12 (2.57 g), 3,4-dihydro- 2 H -pyran (3.78 g), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$ and PTSA (15 mg) was stirred for 10 h . After removal of solvent under reduced pressure the black oil residue was purified by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography ($1: 4$; EtOAc-hexane) to give the diastereoisomeric ethers 13 as a yellow oil ($2.945 \mathrm{~g}, 90 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1735,1660$ and 1630 ; $\delta_{\mathrm{H}}($ isomer A) $5.25(1 \mathrm{H}, \mathrm{t}, J 2.5), 4.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{d}, J$ 3), $3.95(1 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{q}, J 7.5)$, $1.73(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J 6)$ and $1.03(3 \mathrm{H}, \mathrm{t}, J 7.5) ; \delta_{\mathrm{H}}$ (isomer B) $5.25(1 \mathrm{H}, \mathrm{t}, J 2.5), 4.88(1 \mathrm{H}$, br s), $4.74(1 \mathrm{H}$, br s), $3.87(1 \mathrm{H}$, m), $3.84(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{m}), 2.18(2 \mathrm{H}, \mathrm{q}, J 7.5), 1.72(3 \mathrm{H}, \mathrm{s})$, $1.096(3 \mathrm{H}, \mathrm{d}, J 6)$ and $1.03(3 \mathrm{H}, \mathrm{t}, J 7.5)$ (Found: $\mathrm{M}^{+}, 394.2357$. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{M}, 394.2355$).

Diastereoisomeric lactones 15

A solution of the ethers $13(1.725 \mathrm{~g})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of LDA $\left(1.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in cyclohexane; $30 \mathrm{~cm}^{3}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 5 h the mixture was quenched at $-78^{\circ} \mathrm{C}$ with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography ($3: 7$; EtOAc-hexane) gave the diastereoisomeric lactones $15(1.20 \mathrm{~g}, 69 \%), v_{\max } / \mathrm{cm}^{-1} 3455$ and 1715. The diastereoisomeric mixture could be separated by fractional crystallisation (from EtOAc-hexane) into a pale yellow oil, δ_{H} $4.95(1 \mathrm{H}, \mathrm{t}, J 2.5), 4.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{d}, J 4.5), 3.99(1 \mathrm{H}$, m), $3.58(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}, \mathrm{q}, J 7.5), 1.40(1 \mathrm{H}, \mathrm{dd}$, $J 11$ and 4.5$), 1.27(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.10(3 \mathrm{H}, \mathrm{s})$ and $1.03(3 \mathrm{H}, \mathrm{d}, J$ 6) (Found: $\mathrm{M}^{+}, 394.2357 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{M}, 394.2355$) and a crystalline solid, mp $169-171^{\circ} \mathrm{C}$ (from EtOAc-hexane); δ_{H} $4.75(1 \mathrm{H}, \mathrm{t}, J 3), 4.3(1 \mathrm{H}, \mathrm{d}, J 3.8), 3.90(1 \mathrm{H}, \mathrm{m}), 3.55(3 \mathrm{H}, \mathrm{s})$, $3.50(1 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.40(1 \mathrm{H}, \mathrm{dd}, J 11$ and 4.5$), 1.27$ $(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.09(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: C, 67.0; $\mathrm{H}, 8.7 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.0 ; \mathrm{H}, 8.7 \%$)

Hydroxy ketone 17

Anhydrous PTSA (20 mg) was added to a solution of the ethers $15(4.6 \mathrm{~g})$ in 10% aq. $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ at room temp. After 12 h the MeOH was removed under reduced pressure and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. The residue was purified by dry column $\mathrm{SiO}_{2} \mathrm{H}$ chromatography ($1: 1$; EtOAc-hexane) to afford the alcohol 17 as a crystalline solid ($2.4 \mathrm{~g}, 74 \%$), mp 139-141 ${ }^{\circ} \mathrm{C}$ (from EtOAchexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3480,1750$ and $1705 ; \delta_{\mathrm{H}} 3.65(1 \mathrm{H}, \mathrm{d}, J 6.5)$, $3.36(1 \mathrm{H}$, br t, $J 2.5), 3.02(1 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{s}), 1.89(3 \mathrm{H}, \mathrm{s})$, $1.44(3 \mathrm{H}, \mathrm{d}, J 7), 1.21(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 6.5$), 0.96(3 \mathrm{H}, \mathrm{d}, J 6)$ and $0.80(3 \mathrm{H}, \mathrm{s})$ (Found: C, $68.8 ; \mathrm{H}, 8.0 \% ; \mathrm{M}^{+}, 278.1514$. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 8.0 \% ; \mathrm{M}, 278.1518$).

Diol 20

$\mathrm{NaBH}_{4}(155 \mathrm{mg})$ was added in small portions to a stirred solution of the lactone $17(380 \mathrm{mg})$ in $\mathrm{Pr}^{\mathrm{i} O H}\left(40 \mathrm{~cm}^{3}\right)$ under N_{2} at $0^{\circ} \mathrm{C}$. After 2 h saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 60 \mathrm{~cm}^{3}\right)$. Work-up in the usual way followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography ($1: 1$; EtOAc-hexane) gave the diol 20 as a solid (306 $\mathrm{mg}, 80 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 3425$ and $1685 ; \delta_{\mathrm{H}} 4.23(1 \mathrm{H}, \mathrm{t}, J 3), 3.98(1$ H , br t, $J 2.5$), $3.56(1 \mathrm{H}, \mathrm{dd}, J 7$ and 4$), 3.37(1 \mathrm{H}, \mathrm{m}), 1.94(3 \mathrm{H}$, s), $1.47(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.20(1 \mathrm{H}, \mathrm{dd}, J 11$ and 3$)$, $0.96(3 \mathrm{H}, \mathrm{d}, J 6.5)$ and $0.80(3 \mathrm{H}, \mathrm{s})$ (Found: $\mathrm{M}^{+}, 280.1684$. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{M}, 280.1675$).

Isopropylidenelactone 21

PTSA (5 mg) was added to a solution of diol $20(142 \mathrm{mg})$ and 2-methoxypropene ($200 \mathrm{~mm}^{3}$) in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right.$) at $0^{\circ} \mathrm{C}$ under N_{2}. After 10 h at room temp. the mixture was evaporated to dryness and the residue was purified by SiO_{2} H dry column chromatography ($1: 4 ; \mathrm{EtOAc}$-hexane) to give the ketal 21 ($145 \mathrm{mg}, 89 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}} 4.54(1 \mathrm{H}, \mathrm{m})$, $4.45(1 \mathrm{H}, \mathrm{dd}, J 8$ and 5$), 4.00(1 \mathrm{H}, \mathrm{t}, J 2.5), 3.17(1 \mathrm{H}, \mathrm{m}), 1.88$ $(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{d}, J 8), 1.27(3 \mathrm{H}, \mathrm{s})$ and 0.98 $(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: $\mathrm{M}^{+}, 320.1980 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$ requires M , 320.1987).

Diastereoisomeric lactols 23

(a) DIBAL ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $1.82 \mathrm{~cm}^{3}$) was added dropwise to a solution of the lactone $21(145 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under Ar. After 30 min the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$. Work-up in the usual way followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography (1:3; EtOAc-hexane) gave a mixture ($4: 1$) of diastereoisomeric lactols 23 ($118 \mathrm{mg}, 89 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 3405$; δ_{H} (major isomer) 5.24 $(1 \mathrm{H}, \mathrm{d}, J 7), 4.30(2 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{t}, J 3), 2.95(1 \mathrm{H}, \mathrm{m}), 1.73$
($3 \mathrm{H}, \mathrm{s}$), $1.57(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.27(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}$, s) and $1.15(3 \mathrm{H}, \mathrm{d}, J 6)$ and δ_{H} (minor isomer) $5.06(1 \mathrm{H}, \mathrm{d}, J$ $4.5), 4.30(2 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{t}, J 3), 2.95(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{s})$, $1.57(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.33(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s})$ and $1.12(3 \mathrm{H}, \mathrm{d}, J 6)$ (Found: $\mathrm{M}^{+}, 322.2155 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires M , 322.2144).
(b) $\mathrm{LiAlH}_{4}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in THF; $310 \mathrm{~mm}^{3}$) was added dropwise to a solution of the lactone $21(44 \mathrm{mg})$ in THF at $-78^{\circ} \mathrm{C}$ under Ar. The cooling bath was removed and after 10 h saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and worked up in the usual way. $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography ($1: 3$; EtOAc-hexane) gave the lactols ($1: 9$) ($25 \mathrm{mg}, 57 \%$).

Diene 25

$\mathrm{LiAlH}_{4}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF; $180 \mathrm{~mm}^{3}$) was added dropwise to a solution of the lactone $21(52 \mathrm{mg})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under Ar. $\mathrm{MeSO}_{2} \mathrm{Cl}\left(40 \mathrm{~mm}^{3}\right.$) was added carefully, followed by $\mathrm{Et}_{3} \mathrm{~N}\left(230 \mathrm{~mm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temp. overnight and was then filtered through a short pad of $\mathrm{SiO}_{2} 60 \mathrm{H}$. After evaporation of the solvent the residue was purified by $\mathrm{SiO}_{2} 60 \mathrm{H}$ dry column chromatography ($1: 9$; EtOAc-hexane) to afford the diene $\mathbf{2 5}$ as an oil ($24 \mathrm{mg}, 49 \%$), $\lambda_{\text {max }} / \mathrm{nm} 255 ; \delta_{\mathrm{H}} 6.57(1 \mathrm{H}, \mathrm{q}, J 1.5), 4.52$ (2 $\mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{t}, J 3.5), 1.99(3 \mathrm{H}, \mathrm{s}), 1.95(3 \mathrm{H}, \mathrm{d}, J 1.5), 1.53$ $(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s})$ and $1.06(3 \mathrm{H}, \mathrm{d}, J 7)$ (Found: $\mathrm{M}^{+}, 304.2035 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{M}, 304.2037$).

Formate 29

NMMNO hydrate (16 mg) was added to a solution of the diene $25(67 \mathrm{mg})$ in $\mathrm{Bu}^{t} \mathrm{OH}\left(3 \mathrm{~cm}^{3}\right)$ containing water (4 drops). OsO_{4} (4 mg) was added to the stirred solution. After $12 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ $(\sim 1 \mathrm{~g})$ was added, and after 30 min the mixture was filtered through a short pad of $\mathrm{SiO}_{2} 60 \mathrm{H}$. The solvents were removed under reduced pressure to afford crude diol (70 mg), which was dissolved in $\mathrm{MeOH}\left(8 \mathrm{~cm}^{3}\right)$-water $\left(4 \mathrm{~cm}^{3}\right) . \mathrm{NaIO}_{4}(128 \mathrm{mg})$ was added to the solution. After 3 h , water $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 cm^{3}) were added and the mixture was stirred for an additional 10 min . The organic phase was then separated and the aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. Work-up in the usual way, followed by $\mathrm{SiO}_{2} 60 \mathrm{H}$ flash column chromatography (3:7; EtOAc-hexane), gave formate 29 as an oil ($24 \mathrm{mg}, 33 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 1725$ and $1690 ; \delta_{\mathrm{H}} 8.00(1 \mathrm{H}, \mathrm{s}), 5.88(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 2.5)$, $4.59(1 \mathrm{H}, \mathrm{dd}, J 7$ and 3$), 4.43(1 \mathrm{H}, \mathrm{d}, J 7), 2.25(3 \mathrm{H}, \mathrm{s}), 1.77(3$ $\mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s})$ and $1.06(3 \mathrm{H}, \mathrm{d}, J$ 6); $m / z(\mathrm{CI}) 354$ (Found: $\mathrm{M}^{+}, 336.1929 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$ requires M , 336.1937).

Acknowledgements

We thank the Sino-British Friendship Scholarship Scheme, the SERC, and the University of Manchester for financial support.

References

1 S. V. Bhat, B. S. Bajwa, H. Dornauer, N. J. de Sauza and H. W. Feldhaber, Tetrahedron Lett., 1977, 1669; K. W. Seamon, Annu. Rep. Med. Chem., 1984, 19, 293.
2 F. E. Ziegler, B. H. Jaynes and M. T. Sainane, J. Am. Chem. Soc., 1987, 109, 8115; E. J. Corey, P. da Silva Jardine and J. C. Rohloff, J. Am. Chem. Soc., 1988, 110, 3672; S.-i. Hashimoto, S. Sakata, M. Sonegawa and S. Ikegami, J. Am. Chem. Soc., 1988, $110,3670$.

3 N. Khan, L. Larsen and J. K. Sutherland, Tetrahedron, 1993, 49, 8233.

4 V. V. Rheenan, R. C. Kelly and D. Y. Cha, Tetrahedron Lett., 1976, 1973.

5 W. P. Griffith and S. V. Ley, Aldrichim. Acta, 1989, 22, 53.
Paper 4/07503J
Received 8th December 1994 Accepted 3rd February 1995

[^0]: $\dagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

